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Evolution by Damage Spreading in Kauffman Model 
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In Kauffman's Boolean automata model on the square lattice, the Darwinian 
fitness of survival can be defined as the fraction of elements which do not 
change from one iteration to the next. Biological mutations are simulated by 
flipping one bit in the rule of one site. Selection of the fitter mutant  then 
optimizes the whole lattice completely. This optimization is particularly effective 
near the critical point of the transition to chaos, but is in itself not a critical 
phenomenon. Also a two-dimensional spin glass can be optimized in this way. 

KEY W O R D S :  Cellular automata;  critical phenomena; optimization; spin 
glass. 

Simplified mathematical  models of biology have an old history, e.g., in 
population dynamics. Discrete mathematics as in cellular automata  is 
particularly useful for genetics, if every gene is assumed to be either on or 
off, depending on its interactions with other genes and on mutations. In 
cellular automata,  each site of a large lattice carries a variable which is 
either zero or one (gene off or on) and which physicists like to call a spin. 
The value of a spin at the next time step t is determined completely by the 
value of its neighbor spins at time t. Thus both time and space are discrete, 
allowing high-speed parallel or vector simulation techniques. Kauffman II~ 
used similar cellular automata  to describe cell differentiation in genetics. 

The Kauffman model of random Boolean automata  is a mixture of 
all possible cellular automata,  t21 Its computer  simulation is particularly 
efficient if the N = L*L sites of a square lattice are influenced by their K =  4 
nearest neighbors. Then nearly 10 9 spins are treated per second on one 
processor of a NEC-SX3 supercomputer,  t31 and many millions on the D E C  
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Alpha and HP workstations used in this study. Each site carries a spin 
which is either up or down; thus each spin is influenced by one of the 
2K= 16 neighbor configurations. For each of these neighbor configurations, 
the spin selects at the initialization of the simulation whether it will point 
up (probability p) or down (probability 1 - p ) .  These 16 bits of choices 
made in the initialization for one site constritute the rule of this site, which 
means the later reaction of the gene to whatever the neighbor configuration 
is. 

A mutation then can be a change of one spin, or of one bit in its rule ~41 
which affects the time development of the lattice. The number of spins 
differing in the site-by-site comparison of the changed with the unchanged 
lattice is the Hamming distance; if the initial change is restricted to one site 
or another localized region (as is the case here), we denote this Hamming 
distance as the damage, and check if the damage spreads over the whole 
lattice, remains localized, or eventually dies out. For the nearest-neighbor 
Kauffman model on the square lattice, p,.=0.31 ( o r = 1 - 0 . 3 1 = 0 . 6 9 )  
seems to be the critical point ~5) for this transition to chaos: For p <p , .  
damage does not spread, whereas for p,. < p < 1/2 damage can spread to 
infinity. The size distribution of the damage avalanches obeys a power law 
at the critical point, but not away from it. ts~ 

Biologically the spins of the Kauffman model may correspond to 
genes, turned on or off, of one species. If biological evolution is based on 
random mutation, then the damage should not die out or remain very 
small, since then the mutation has no effect. On the other hand, damage 
should not be too large, changing, e.g., one-third of all the genes and trying 
to transform a rat into a dog. Thus, according to Kauffman, a successfully 
evolving genome should be poised at the edge of chaos, close to the critical 
point 0.31, where the damage is',large but not infinite. The fitness of the 
Kauffman model is defined as the fraction of sites which do not change 
from one iteration to the next; thus, should the system reach a fixed point 
where nothing moves any longer, the fitness is optimal and equals one. The 
present note implements this idea, checks if this optimization really works, 
and looks for the importance of the critical point. (Our "fitness" definition 
here may agree with the one used by Kauffman, t~) but does not correspond 
to a biological growth factor and its response to changes in external 
parameters.16~) 

Thus our computer simulates two different Kauffman square lattices 
simultaneously, one without and the other with mutations. After every 
mutation, we give the damage ten sweeps through the lattice to spread, 
check which of the two lattices has the higher fitness, and then copy the 
one with the higher fitness into the array used before for the lower fitness. 
Then another mutation is introduced, and the selection process is repeated 
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again and again. The time t is the number of updates of the whole lattice, 
requiring Nt updated spins. Biologically, t might at first be identified with 
the. number of cell divisions. 

Figure 1 shows how a lattice with five million spins tries to optimize 
its fitness without the help of any mutations: The fraction of changed sites, 
i.e., the difference of the fitness from its optimal value of unity, decreases 
somewhat during the first time steps, but then stays constant. Clearly this 
optimization strategy is not very successful. 

Random mutations change the results drastically: Fig. 2 shows that 
now after a sufficiently long time the fitness reaches its optimal value, 
since the number of changing sites decreases exponentially with time, as 
exp(- t /z ) .  Figure 3 shows for various times the fitness as a function of the 
parameter p. After about a million time steps, the fitness reaches unity even 
for p = 1/2. We see that for intermediate times the largest improvement in 
the fitness, i.e., the largest reduction in the fraction of changing spins, is 
reached for p near the critical point 0.31. In this sense the data justify the 
hypothesis that life might evolve best near the edge of choas. 

However, this optimum is not a critical phenomenon like damage 
spreading in Kauffman models, the Curie point in ferromagnets, or vapor- 
liquid equilibria near their critical point. We see in Fig. 2 that the relaxa- 
tion time ~ and the initial fraction of changing sites increase monotonically 
with the parameter p. Thus, for small p the fitness gain is small, since the 
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Fig. 1. Number  of changing sites versus time t without mutations. This optimization is seen 
to stop long before it is complete. 
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32*32 damage optimization. I0 runs, p=0.05 (0.05J 0.4 and 0.5 
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Fig. 2. Number of changing sites, out of 1024 sites, versus time t with mutations happening 
after every 10 time steps. Now optimization continues to completion: Fitness= 1, no site 
change any longer. From bottom to top, p varies from 0.05 in steps of 0.05~).4, followed by 
p=0.5.  
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Fig. 3. Fraction of changing sites versus p; this parameter is called the internal homogeneity 
by Kauffman. Time t increases from diamonds ( t = 2 0 0 )  over plusses ( t =  1000), squares 
(r  10,000), crosses ( t =  100,000), to triangles (one million time steps). In most cases, the 
spins stopped changing already before t = 106 was reached�9 
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Fig. 4. Comparison of different sizes N =  L �9 L of the square lattice. The scaled change is 
the number of changing sites, divided by N, and is plotted versus the scaled time t/N. 
(a) Comparison of L = 32 with L = 64 and L = 96, (b) comparison of the two latter sizes with 
L=992;  for L =  1472 at t/N=O.046 the change is 0.217. 
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fitness starts already close to its optimum. For large p (near 1/2) the fitness 
gain after 100,000 time steps is small, since the relaxation time is too large. 
Thus only at intermediate p, around the critical point p = 0.31, do we get 
a fast and large gain in fitness. 

One may question if 100,000 time steps should be described as a "fast" 
fitness evolution. However, nature does not operate like a workstation, but 
treats genes in parallel. Mutations may occur independently of each other 
in different parts of the genome. Then our model does not decribe the 
whole set of genes, but only a small part within which the probability of 
two simultaneous mutations is negligibly small: With 105 genes active in 
the human genome, the 105 time steps = 104 mutations for o u r  10 3 genes in 
Fig. 2 correspond to only ten mutations per gene, which is no longer a 
huge requirement for the number of steps needed to find an optimal fitness. 

In other words, biological time should be proportional to t/N and not 
just to the number t of iterations of the lattice of N =  L.L spins, in this 
mutation algorithm. Indeed, Fig. 4 plots the fraction of changing sites s 
versus t/N, and now we see that different lattice sizes give nearly the same 
results. 

Similar results are obtained for the two-dimensional Edwards-Anderson 
spin glass with _ J  interactions, recently optimized tTI by another Darwinian 
procedure. Now the "fitness" is merely the negative interaction energy per 

damage optimization in L~ spin glass: L:191,I01,53,23,13,7 from top 
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Fig. 5. Comparison of different sizes for the square-lattice spin glass. The fitness now is the 
negative interaction energy and is plotted versus the scaled time t/(number of spins). 
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site in units of J and could vary between - 1  and I. First we flip a spin 
only if this flip lowers the energy and soon arrive at a fixed point (local 
fitness optimum near 1.047) (Fig. 5). The mutations through damaging one 
spin increase this fitness toward 1.35 (for t = 50,000 Monte Carlo steps per 
spin in a 53 * 53 lattice), about the same as the fitness reached in ref. 7 
for this ground-state energy. In contrast to the Kauffman model, this zero- 
temperature spin glass always reaches a fixed point after a few iterations. 

Thus this computer simulation found what nature found billions of 
years ago, that damage spreading due to mutations is a possible way in 
which evolution and selection of the fitter mutant can work. Surprisingly, 
optimization by damage spreading leads to ideal fitness = 1 in the Kauffman 
model, if we wait long enough. But for our model the edge of chaos is not 
a sharply defined critical phenomenon in the optimization results. 
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NOTE ADDED IN PROOF 

Results similar to the two-dimensional Edwards-Anderson spin glass 
were obtained for the three-dimensional system (M. Cleary, private 
communication). 
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